土工格室在提速铁路路基加固中的应用原理分析
针对铁路既有线提速对路基带来的影响,根据路基受力原理,分析、介绍了土工格室加固路基的应用原理。
铁路路基作为轨道结构的基础,必须具有强度高、刚度大、稳定性和耐久性好的特性,并能抵抗各种自然因素的影响。既有铁路经过长期运营,其路基面大多不同程度出现翻浆冒泥、下沉外挤及路基排水不良等病害。近年来,在全路范围内普遍实施铁路提速,在既有线提速改造中,作为轨道结构基础的路基,如何满足高速、重载条件下的强度,是必须要面对并应解决的技术课题。土工格室就是近几年发展起来的一种行之有效的整治路基病害、加固提速路基的方法。本文结合浙赣线提速改造工程,对土工格室在路基加固中的应用进行分析。路基受力原理基床是铁路路基重要的组成部分,也是路基结构中薄弱的部分之一。基床表层直接承受列车传递的荷载,受动应力影响大,土工格室,因此路基加固一般就是对基床进行加固。路基动应力路基动应力主要是指在列车运行时通过钢轨、轨枕、道床传到路基表面的动应力幅值和频率。列车提速后,既有线上路基所受动应力的变化决定路基技术条件的提高。在列车荷载作用下,路基动应力的幅值受诸多因素影响,尤其是机车车辆类型、轴重、列车运行速度和线路状态等。
土工格室、土工格栅及土工布的加筋机理比较
介绍土工格室这种新型材料,并比较土工格室和土工格栅及土工布的加筋机理,土工格室施工方案,前者是三维的,而土工格栅和土工布是二维的(平面的),所以土工格室具有一定抗弯性,能分散上部结构的竖向应力.
20世纪60年代,法国工程师H.Vidal在挡土墙设计中大胆采用镀锌钢带作为加筋材料并取得了很好的效果。随后他发表了很多有关加筋土方面的研究论文,促进了加筋土技术在挡土墙、路基、边坡和地基中的广泛应用,同时进行了相应的理论研究,土工格室植草,为现代加筋土技术的发展奠定了基础。由于加筋土结构优良的工程特性和低廉的造价,迅速在全世界范围推广使用。随着土工合成材料的发展,加筋材料由初的金属片材变成由聚乙烯/聚丙烯为主要原料共聚而成的土工合成材料。不断出现先进的生产制造工艺使土工合成材料的强度、抗变形和抗老化的能力不断提高,使土工合成材料在土木、水利、交通、铁道和环境工程中得到广泛应用。
土工格室是由高强度聚乙烯焊接或组装而成三维蜂窝状结构,土工格室,荷载作用下不仅可通过与土体上下接触面的摩擦提供侧向约束力来约束土体的侧向变形,而且可与格室内填料共同构成一具有一定抗弯、抗剪和抗压能力的柔性筏板基础,能有效扩散路堤荷载、改善软基应力分布、限制软土的侧向挤出,从而提高软基承载力、减少沉降及不均匀沉降。因此,该土工合成材料已广泛应用于公路、铁路等软基加固工程,成功解决了桥头跳车、软基沉陷、翻浆、塌方等常规方法难以处理的工程问题。目前,对于土工格室加筋体的变形计算较为常用的方法是将其视为置于弹性地基上的有限或无限长梁,而后采用弹性地基梁理论进行解答。置于软基上的土工格室加筋体受路堤荷载、车辆荷载等竖向荷载作用产生挠曲变形时,格室加筋体与其上下表面土体界面间将产生较大的摩阻力,该摩阻力反过来又将影响格室体筋材拉力及竖向变形的大小。而传统弹性地基梁理论由于不计入水平向地基反力的影响而未能考虑筋土界面摩阻效应影响,因此无法反映土工格室加筋体的实际受力变形状态。